dmtcs:12816 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2013,
DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
-
https://doi.org/10.46298/dmtcs.12816
Schubert polynomials and $k$-Schur functions (Extended abstract)Article
Authors: Carolina Benedetti 1; Nantel Bergeron 1
NULL##NULL
Carolina Benedetti;Nantel Bergeron
1 Department of Mathematics and Statistics [Toronto]
The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function can be understood from the multiplication in the space of dual $k$-Schur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the $r$-Bruhat order given by Bergeron-Sottile, along with certain operators associated to this order. On the other side, we connect this poset with a graph on dual $k$-Schur functions given by studying the affine grassmannian order of Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual $k$-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem.