Discrete Mathematics & Theoretical Computer Science |
Let $\pi_n$ be a uniformly chosen random permutation on $[n]$. Using an analysis of the probability that two overlapping consecutive $k$-permutations are order isomorphic, the authors of a recent paper showed that the expected number of distinct consecutive patterns of all lengths $k\in\{1,2,\ldots,n\}$ in $\pi_n$ is $\frac{n^2}{2}(1-o(1))$ as $n\to\infty$. This exhibited the fact that random permutations pack consecutive patterns near-perfectly. We use entirely different methods, namely the Stein-Chen method of Poisson approximation, to reprove and slightly improve their result.