Discrete Mathematics & Theoretical Computer Science |
Interval parking functions are a generalization of parking functions in which cars have an interval preference for their parking. We generalize this definition to parking functions with $n$ cars and $m\geq n$ parking spots, which we call interval rational parking functions and provide a formula for their enumeration. By specifying an integer parameter $\ell\geq 0$, we then consider the subset of interval rational parking functions in which each car parks at most $\ell$ spots away from their initial preference. We call these $\ell$-interval rational parking functions and provide recursive formulas to enumerate this set for all positive integers $m\geq n$ and $\ell$. We also establish formulas for the number of nondecreasing $\ell$-interval rational parking functions via the outcome map on rational parking functions. We also consider the intersection between $\ell$-interval parking functions and Fubini rankings and show the enumeration of these sets is given by generalized Fibonacci numbers. We conclude by specializing $\ell=1$, and establish that the set of $1$-interval rational parking functions with $n$ cars and $m$ spots are in bijection with the set of barred preferential arrangements of $[n]$ with $m-n$ bars. This readily implies enumerative formulas. Further, in the case where $\ell=1$, we recover the results of Hadaway and Harris that unit interval parking functions are in bijection with the set of Fubini rankings, which are enumerated by the Fubini numbers.