End-vertices of a given graph search may have some nice properties, as for example it is well known that the last vertex of Lexicographic Breadth First Search (LBFS) in a chordal graph is simplicial, see Rose, Tarjan and Lueker 1976. Therefore it is interesting to consider if these vertices can be recognized in polynomial time or not, as first studied in Corneil, Köhler and Lanlignel 2010. A graph search is a mechanism for systematically visiting the vertices of a graph. At each step of a graph search, the key point is the choice of the next vertex to be explored. Graph searches only differ by this selection mechanism during which a tie-break rule is used. In this paper we study how the choice of the tie-break in case of equality during the search, for a given graph search including the classic ones such as BFS and DFS, can determine the complexity of the end-vertex problem. In particular we prove a counterintuitive NP-completeness result for Breadth First Search solving a problem raised in Corneil, Köhler and Lanlignel 2010.

Source : oai:HAL:hal-01101514v1

Volume: Vol. 16 no. 2

Section: PRIMA 2013

Published on: July 29, 2014

Submitted on: November 1, 2013

Keywords: [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

This page has been seen 94 times.

This article's PDF has been downloaded 25 times.