Cell-paths in mono- and bichromatic line arrangements in the planeArticleAuthors: Oswin Aichholzer
1; Jean Cardinal
2; Thomas Hackl
1; Ferran Hurtado
3,4; Matias Korman
5,6,7,8; Alexander Pilz
1; Rodrigo I. Silveira
3,9,4; Ryuhei Uehara
10; Pavel Valtr
11,12; Birgit Vogtenhuber
1; Emo Welzl
13
NULL##NULL##NULL##NULL##NULL##0000-0002-6059-1821##0000-0003-0202-4543##0000-0003-0895-3765##NULL##0000-0002-7166-4467##NULL
Oswin Aichholzer;Jean Cardinal;Thomas Hackl;Ferran Hurtado;Matias Korman;Alexander Pilz;Rodrigo I. Silveira;Ryuhei Uehara;Pavel Valtr;Birgit Vogtenhuber;Emo Welzl
Combinatorics
[en]
We prove that the dual graph of any arrangement of n lines in general position always contains a path of length at least n2/4. Further, we show that in every arrangement of n red and blue lines — in general position and not all of the same color — there is a simple path through at least n cells where red and blue lines are crossed alternatingly.
Volume: Vol. 16 no. 3
Section: Combinatorics
Published on: December 18, 2014
Imported on: May 21, 2014
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Discrete geometry, Line arrangement, Planar graphs, Hamiltonicity
Funding:
Source : OpenAIRE Graph- EuroGIGA_Erdös-Szekeres type problems for colored point sets and compatible graphs; Code: I 648
- Combinatorial problems on geometric graphs; Code: P 23629
- Strategic Project - UI 4106 - 2014; Funder: Fundação para a Ciência e a Tecnologia, I.P.; Code: PEst-OE/MAT/UI4106/2014