François Boulier ; Florent Hivert ; Daniel Krob ; Jean-Christophe Novelli
-
Pseudo-Permutations II: Geometry and Representation Theory
dmtcs:2299 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2001,
DMTCS Proceedings vol. AA, Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG 2001)
-
https://doi.org/10.46298/dmtcs.2299Pseudo-Permutations II: Geometry and Representation TheoryConference paperAuthors: François Boulier
1; Florent Hivert
2; Daniel Krob
3; Jean-Christophe Novelli
4,2
0000-0002-6663-719X##0000-0002-7531-5985##NULL##NULL
François Boulier;Florent Hivert;Daniel Krob;Jean-Christophe Novelli
In this paper, we provide the second part of the study of the pseudo-permutations. We first derive a complete analysis of the pseudo-permutations, based on hyperplane arrangements, generalizing the usual way of translating the permutations. We then study the module of the pseudo-permutations over the symmetric group and provide the characteristics of this action.
Volume: DMTCS Proceedings vol. AA, Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG 2001)
Section: Proceedings
Published on: January 1, 2001
Imported on: November 21, 2016
Keywords: [INFO]Computer Science [cs], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Hyperplane Arrangements, Symmetric Group, Permutations, q-analogs