Bruno Durand ; Enrico Formenti ; Aristide Grange ; Zsuzsanna Róka - Number conserving cellular automata: new results on decidability and dynamics

dmtcs:2301 - Discrete Mathematics & Theoretical Computer Science, January 1, 2003, DMTCS Proceedings vol. AB, Discrete Models for Complex Systems (DMCS'03) - https://doi.org/10.46298/dmtcs.2301
Number conserving cellular automata: new results on decidability and dynamicsArticle

Authors: Bruno Durand 1; Enrico Formenti ORCID1; Aristide Grange 2; Zsuzsanna Róka ORCID2

  • 1 Laboratoire d'informatique Fondamentale de Marseille - UMR 6166
  • 2 Laboratoire d'Informatique Théorique et Appliquée


This paper is a survey on our recent results about number conserving cellular automata. First, we prove the linear time decidability of the property of number conservation. The sequel focuses on dynamical evolutions of number conserving cellular automata.


Volume: DMTCS Proceedings vol. AB, Discrete Models for Complex Systems (DMCS'03)
Section: Proceedings
Published on: January 1, 2003
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [NLIN.NLIN-CG]Nonlinear Sciences [physics]/Cellular Automata and Lattice Gases [nlin.CG], [en] cellular automata, decidability, discrete dynamical systems, classification

Classifications

Mathematics Subject Classification 20201

4 Documents citing this article

Consultation statistics

This page has been seen 434 times.
This article's PDF has been downloaded 424 times.