Bruno Durand ; Enrico Formenti ; Aristide Grange ; Zsuzsanna Róka - Number conserving cellular automata: new results on decidability and dynamics

dmtcs:2301 - Discrete Mathematics & Theoretical Computer Science, January 1, 2003, DMTCS Proceedings vol. AB, Discrete Models for Complex Systems (DMCS'03) - https://doi.org/10.46298/dmtcs.2301
Number conserving cellular automata: new results on decidability and dynamicsArticle

Authors: Bruno Durand 1; Enrico Formenti ORCID1; Aristide Grange 2; Zsuzsanna Róka ORCID2

  • 1 Laboratoire d'informatique Fondamentale de Marseille - UMR 6166
  • 2 Laboratoire d'Informatique Théorique et Appliquée

This paper is a survey on our recent results about number conserving cellular automata. First, we prove the linear time decidability of the property of number conservation. The sequel focuses on dynamical evolutions of number conserving cellular automata.


Volume: DMTCS Proceedings vol. AB, Discrete Models for Complex Systems (DMCS'03)
Section: Proceedings
Published on: January 1, 2003
Imported on: November 21, 2016
Keywords: discrete dynamical systems,decidability,cellular automata,classification,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[NLIN.NLIN-CG] Nonlinear Sciences [physics]/Cellular Automata and Lattice Gases [nlin.CG]

Classifications

Mathematics Subject Classification 20201

4 Documents citing this article

Consultation statistics

This page has been seen 313 times.
This article's PDF has been downloaded 262 times.