Bruno Durand ; Enrico Formenti ; Aristide Grange ; Zsuzsanna Róka
-
Number conserving cellular automata: new results on decidability and dynamics
dmtcs:2301 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2003,
DMTCS Proceedings vol. AB, Discrete Models for Complex Systems (DMCS'03)
-
https://doi.org/10.46298/dmtcs.2301Number conserving cellular automata: new results on decidability and dynamicsArticleAuthors: Bruno Durand
1; Enrico Formenti
1; Aristide Grange
2; Zsuzsanna Róka
2
NULL##0000-0002-1007-7912##NULL##0000-0002-2840-3608
Bruno Durand;Enrico Formenti;Aristide Grange;Zsuzsanna Róka
- 1 Laboratoire d'informatique Fondamentale de Marseille - UMR 6166
- 2 Laboratoire d'Informatique Théorique et Appliquée
This paper is a survey on our recent results about number conserving cellular automata. First, we prove the linear time decidability of the property of number conservation. The sequel focuses on dynamical evolutions of number conserving cellular automata.
Volume: DMTCS Proceedings vol. AB, Discrete Models for Complex Systems (DMCS'03)
Section: Proceedings
Published on: January 1, 2003
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [NLIN.NLIN-CG]Nonlinear Sciences [physics]/Cellular Automata and Lattice Gases [nlin.CG], [en] cellular automata, decidability, discrete dynamical systems, classification