Bruno Durand ; Enrico Formenti ; Georges Varouchas
-
On undecidability of equicontinuity classification for cellular automata
dmtcs:2302 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2003,
DMTCS Proceedings vol. AB, Discrete Models for Complex Systems (DMCS'03)
-
https://doi.org/10.46298/dmtcs.2302
On undecidability of equicontinuity classification for cellular automataArticle
Authors: Bruno Durand 1; Enrico Formenti 1; Georges Varouchas 1
NULL##0000-0002-1007-7912##NULL
Bruno Durand;Enrico Formenti;Georges Varouchas
1 Laboratoire d'informatique Fondamentale de Marseille - UMR 6166
Equicontinuity classification is a popular classification of cellular automata based on their dynamical behavior. In this paper we prove that most of its classes are undecidable.
Mikhail Prokopenko;Michael Harré;Joseph Lizier;Fabio Boschetti;Pavlos Peppas;et al., 2019, Self-referential basis of undecidable dynamics: From the Liar paradox and the halting problem to the edge of chaos, arXiv (Cornell University), 31, pp. 134-156, 10.1016/j.plrev.2018.12.003, https://arxiv.org/abs/1711.02456.
Jarkko Kari, Springer eBooks, Tiling Problem and Undecidability in Cellular Automata, pp. 201-219, 2018, 10.1007/978-1-4939-8700-9_552.
Jarkko Kari, Springer eBooks, Tiling Problem and Undecidability in Cellular Automata, pp. 1-20, 2015, 10.1007/978-3-642-27737-5_552-5.
Pietro Di Lena;Luciano Margara, 2014, Nondeterministic Cellular Automata, Information Sciences, 287, pp. 13-25, 10.1016/j.ins.2014.07.007.
F. Blanchard;J. Cervelle;E. Formenti, 2005, Some results about the chaotic behavior of cellular automata, Theoretical Computer Science, 349, 3, pp. 318-336, 10.1016/j.tcs.2005.06.038.