Arnaud Dartois ; Clémence Magnien
-
Results and conjectures on the Sandpile Identity on a lattice
dmtcs:2308 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2003,
DMTCS Proceedings vol. AB, Discrete Models for Complex Systems (DMCS'03)
-
https://doi.org/10.46298/dmtcs.2308
Results and conjectures on the Sandpile Identity on a lattice
Authors: Arnaud Dartois 1; Clémence Magnien 1
NULL##NULL
Arnaud Dartois;Clémence Magnien
1 Laboratoire d'informatique de l'École polytechnique [Palaiseau]
In this paper we study the identity of the Abelian Sandpile Model on a rectangular lattice.This configuration can be computed with the burning algorithm, which, starting from the empty lattice, computes a sequence of configurations, the last of which is the identity.We extend this algorithm to an infinite lattice, which allows us to prove that the first steps of the algorithm on a finite lattice are the same whatever its size.Finally we introduce a new configuration, which shares the intriguing properties of the identity, but is easier to study.
Alfaro, Carlos A.; Valencia, Carlos E., 2012, On The Sandpile Group Of The Cone Of A Graph, Linear Algebra And Its Applications, 436, 5, pp. 1154-1176, 10.1016/j.laa.2011.07.030.
Perrot, Kevin; RĂŠmila, Eric, 2011, Transduction On Kadanoff Sand Pile Model Avalanches, Application To Wave Pattern Emergence, Mathematical Foundations Of Computer Science 2011, pp. 508-519, 10.1007/978-3-642-22993-0_46.
Perrot, Kévin; Rémila, Éric, 2014, Emergence Of Wave Patterns On Kadanoff Sandpiles, LATIN 2014: Theoretical Informatics, pp. 634-647, 10.1007/978-3-642-54423-1_55.
Perrot, KĂŠvin; RĂŠmila, Eric, 2011, Avalanche Structure In The Kadanoff Sand Pile Model, Language And Automata Theory And Applications, pp. 427-439, 10.1007/978-3-642-21254-3_34.