Discrete Mathematics & Theoretical Computer Science |
In a recent paper, Diaconis, Ram and I constructed Markov chains using the coproduct-then-product map of a combinatorial Hopf algebra. We presented an algorithm for diagonalising a large class of these "Hopf-power chains", including the Gilbert-Shannon-Reeds model of riffle-shuffling of a deck of cards and a rock-breaking model. A very restrictive condition from that paper is removed in my thesis, and this extended abstract focuses on one application of the improved theory. Here, I use a new technique of lumping Hopf-power chains to show that the Hopf-power chain on the algebra of quasisymmetric functions is the induced chain on descent sets under riffle-shuffling. Moreover, I relate its right and left eigenfunctions to Garsia-Reutenauer idempotents and ribbon characters respectively, from which I recover an analogous result of Diaconis and Fulman (2012) concerning the number of descents under riffle-shuffling.