Dominic Searles ; Alexander Yong - Root-theoretic Young Diagrams, Schubert Calculus and Adjoint Varieties

dmtcs:2318 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.2318
Root-theoretic Young Diagrams, Schubert Calculus and Adjoint VarietiesConference paper

Authors: Dominic Searles 1; Alexander Yong 1

  • 1 Department of Mathematics [Urbana]

[en]
Root-theoretic Young diagrams are a conceptual framework to discuss existence of a root-system uniform and manifestly non-negative combinatorial rule for Schubert calculus. Our main results use them to obtain formulas for (co)adjoint varieties of classical Lie type. This case is the simplest after the previously solved (co)minuscule family. Yet our formulas possess both uniform and non-uniform features.

[fr]
Les diagrammes de Young racine-théoriques forment un cadre conceptuel qui permet de discuter l’existence de règles de calcul de Schubert explicitement non-négatives et uniformes sur les systèmes de racines. Notre principal résultat est leur utilisation pour obtenir des formules pour les variétés (co)adjointes de types classiques. C’est le cas le plus simple après celui la famille (co)minuscule, déjà résolue. Nos formules possèdent toutefois des propriétés uniformes et non-uniformes.


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Root-theoretic Young diagrams, Schubert calculus, Adjoint varieties
Funding:
    Source : OpenAIRE Graph
  • Combinatorial Models in Schubert Geometry; Funder: National Science Foundation; Code: 1201595
  • Combinatorial and algebraic methods in Schubert geometry; Funder: National Science Foundation; Code: 0901331

Consultation statistics

This page has been seen 390 times.
This article's PDF has been downloaded 780 times.