Valentin Féray ; Maciej Dołęga - On Kerov polynomials for Jack characters (extended abstract)

dmtcs:2322 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.2322
On Kerov polynomials for Jack characters (extended abstract)Article

Authors: Valentin Féray 1; Maciej Dołęga 2

  • 1 Laboratoire Bordelais de Recherche en Informatique
  • 2 Instytut Matematyczny

We consider a deformation of Kerov character polynomials, linked to Jack symmetric functions. It has been introduced recently by M. Lassalle, who formulated several conjectures on these objects, suggesting some underlying combinatorics. We give a partial result in this direction, showing that some quantities are polynomials in the Jack parameter $\alpha$ with prescribed degree. Our result has several interesting consequences in various directions. Firstly, we give a new proof of the fact that the coefficients of Jack polynomials expanded in the monomial or power-sum basis depend polynomially in $\alpha$. Secondly, we describe asymptotically the shape of random Young diagrams under some deformation of Plancherel measure.


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

Consultation statistics

This page has been seen 340 times.
This article's PDF has been downloaded 344 times.