Omar Tout - Structure coefficients of the Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$

dmtcs:2323 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.2323
Structure coefficients of the Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$Conference paper

Authors: Omar Tout 1

[en]
The Hecke algebra of the pair $(\mathcal{S}_{2n}, \mathcal{B}_n)$, where $\mathcal{B}_n$ is the hyperoctahedral subgroup of $\mathcal{S}_{2n}$, was introduced by James in 1961. It is a natural analogue of the center of the symmetric group algebra. In this paper, we give a polynomiality property of its structure coefficients. Our main tool is a combinatorial universal algebra which projects on the Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$ for every $n$. To build it, we introduce new objects called partial bijections.

[fr]
L’algèbre de Hecke de la paire $(\mathcal{S}_{2n}, \mathcal{B}_n)$ , où $\mathcal{B}_n$ est le sous-groupe hyperoctaèdral de $\mathcal{S}_{2n}$, aété introduite par James en 1961. C’est un analogue naturel du centre de l’algèbre du groupe symétrique. Dans ce papier, on donne une propriété de polynomialité de ses coefficients de structure. On utilise une algèbre universelle construite d’une façon combinatoire et qui se projette sur toutes les algèbres de Hecke de $(\mathcal{S}_{2n}, \mathcal{B}_n)$. Pour la construire, on introduit de nouveaux objets appelés bijections partielles.


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$, partial bijections, structure coefficients

Consultation statistics

This page has been seen 441 times.
This article's PDF has been downloaded 435 times.