Redfield-Pólya theorem in $\mathrm{WSym}$Conference paperAuthors: Jean-Paul Bultel
1; Ali Chouria
1; Jean-Gabriel Luque
1; Olivier Mallet
1
NULL##NULL##0000-0002-2621-6016##NULL
Jean-Paul Bultel;Ali Chouria;Jean-Gabriel Luque;Olivier Mallet
- 1 Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes
[en]
We give noncommutative versions of the Redfield-Pólya theorem in $\mathrm{WSym}$, the algebra of word symmetric functions, and in other related combinatorial Hopf algebras.
[fr]
Nous donnons des versions non-commutatives du théorème d’énumération de Redfield-Pólya dans $\mathrm{WSym}$, l’algèbre des fonctions symétriques sur les mots, ainsi que dans d’autres algèbres de Hopf combinatoires.
Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Symmetric functions, Redfield-Pólya theorem, Combinatorial Hopf algebras, Operads
Funding:
Source : OpenAIRE Graph- Algebraic Combinatorics, Resurgence, Moulds and Applications; Funder: French National Research Agency (ANR); Code: ANR-12-BS01-0017
- Algebraic Combinatorics, Resurgence, Moulds and Applications; Funder: French National Research Agency (ANR); Code: ANR-08-BLAN-0243