Jean-Christophe Aval ; Michele D'Adderio ; Mark Dukes ; Angela Hicks ; Yvan Le Borgne
-
A $q,t-$analogue of Narayana numbers
dmtcs:2329 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2013,
DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
-
https://doi.org/10.46298/dmtcs.2329
A $q,t-$analogue of Narayana numbersArticle
Authors: Jean-Christophe Aval 1; Michele D'Adderio ; Mark Dukes 2; Angela Hicks 3; Yvan Le Borgne 1
NULL##NULL##0000-0002-2779-2680##NULL##NULL
Jean-Christophe Aval;Michele D'Adderio;Mark Dukes;Angela Hicks;Yvan Le Borgne
1 Laboratoire Bordelais de Recherche en Informatique
2 Department of Computer and Information Sciences [Univ Strathclyde]
3 Department of Mathematics [Univ California San Diego]
We study the statistics $\mathsf{area}$, $\mathsf{bounce}$ and $\mathsf{dinv}$ associated to polyominoes in a rectangular box $m$ times $n$. We show that the bi-statistics ($\mathsf{area}$,$\mathsf{bounce}$) and ($\mathsf{area}$,$\mathsf{dinv}$) give rise to the same $q,t-$analogue of Narayana numbers, which was introduced by two of these authors in a recent paper. We prove the main conjectures of that same work, i.e. the symmetries in $q$ and $t$, and in $m$ and $n$ of these polynomials, by providing a symmetric functions interpretation which relates them to the famous diagonal harmonics.