Jean-Christophe Aval ; Michele d'Adderio ; Mark Dukes ; Angela Hicks ; Yvan Le Borgne
-
A $q,t-$analogue of Narayana numbers
dmtcs:2329 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2013,
DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
-
https://doi.org/10.46298/dmtcs.2329A $q,t-$analogue of Narayana numbersConference paperAuthors: Jean-Christophe Aval
1; Michele D'Adderio ; Mark Dukes
2; Angela Hicks
3; Yvan Le Borgne
1
NULL##NULL##0000-0002-2779-2680##NULL##0009-0008-4023-8677
Jean-Christophe Aval;Michele D'Adderio;Mark Dukes;Angela Hicks;Yvan Le Borgne
We study the statistics $\mathsf{area}$, $\mathsf{bounce}$ and $\mathsf{dinv}$ associated to polyominoes in a rectangular box $m$ times $n$. We show that the bi-statistics ($\mathsf{area}$,$\mathsf{bounce}$) and ($\mathsf{area}$,$\mathsf{dinv}$) give rise to the same $q,t-$analogue of Narayana numbers, which was introduced by two of these authors in a recent paper. We prove the main conjectures of that same work, i.e. the symmetries in $q$ and $t$, and in $m$ and $n$ of these polynomials, by providing a symmetric functions interpretation which relates them to the famous diagonal harmonics.
Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] q, t-Narayana, rectangular polyominoes, parking functions.