Velleda Baldoni ; Nicole Berline ; Brandon Dutra ; Matthias Köppe ; Michele Vergne et al.
-
Top Coefficients of the Denumerant
dmtcs:2373 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2013,
DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
-
https://doi.org/10.46298/dmtcs.2373
Top Coefficients of the DenumerantArticle
Authors: Velleda Baldoni 1,2,3; Nicole Berline 4; Brandon Dutra 5; Matthias Köppe 5; Michele Vergne 6; Jesus De Loera
NULL##NULL##NULL##NULL##NULL##NULL
Velleda Baldoni;Nicole Berline;Brandon Dutra;Matthias Köppe;Michele Vergne;Jesus De Loera
5 Department of Mathematics [Univ California Davis]
6 Institut de Mathématiques de Jussieu
For a given sequence $\alpha = [\alpha_1,\alpha_2,\ldots , \alpha_N, \alpha_{N+1}]$ of $N+1$ positive integers, we consider the combinatorial function $E(\alpha)(t)$ that counts the nonnegative integer solutions of the equation $\alpha_1x_1+\alpha_2 x_2+ \ldots+ \alpha_Nx_N+ \alpha_{N+1}x_{N+1}=t$, where the right-hand side $t$ is a varying nonnegative integer. It is well-known that $E(\alpha)(t)$ is a quasipolynomial function of $t$ of degree $N$. In combinatorial number theory this function is known as the $\textit{denumerant}$. Our main result is a new algorithm that, for every fixed number $k$, computes in polynomial time the highest $k+1$ coefficients of the quasi-polynomial $E(\alpha)(t)$ as step polynomials of $t$. Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for $E(\alpha)(t)$ and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Experiments using a $\texttt{MAPLE}$ implementation will be posted separately.