Giacomo d'Antonio ; Emanuele Delucchi - Combinatorial Topology of Toric arrangements

dmtcs:2374 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.2374
Combinatorial Topology of Toric arrangementsConference paper

Authors: Giacomo d'Antonio 1; Emanuele Delucchi 1

  • 1 Fachbereich Mathematik und Informatik [Bremen]

[en]
We prove that the complement of a complexified toric arrangement has the homotopy type of a minimal CW-complex, and thus its homology is torsion-free. To this end, we consider the toric Salvetti complex, a combinatorial model for the arrangement's complement. Using diagrams of acyclic categories we obtain a stratification of this combinatorial model that explicitly associates generators in homology to the "local no-broken-circuit sets'' defined in terms of the incidence relations of the arrangement. Then we apply a suitably generalized form of Discrete Morse Theory to describe a sequence of elementary collapses leading from the full model to a minimal complex.

[fr]
On démontre que l’espace complémentaire d’un arrangement torique complexifié a le type d’homotopie d’un complexe CW minimal, donc que ses groupes d’homologie sont libres. On considère d’abord un modèle combinatoire du complémentaire de l’arrangement: le complexe de Salvetti torique. On obtient une stratification de ce complexe qui fait correspondre explicitement les générateurs d’homologie aux “circuits-non-rompus locaux” associés aux relations d’incidence de l’arrangement. On applique une forme généralisée de la théorie de Morse discrète pour obtenir une suite de collapsements élémentaires qui conduit à un complexe minimal.


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Combinatorial topology, Toric arrangements, Discrete Morse theory, Torsion-freeness in homology.

Consultation statistics

This page has been seen 411 times.
This article's PDF has been downloaded 1132 times.