Marko Thiel - On the $H$-triangle of generalised nonnesting partitions

dmtcs:2382 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2382
On the $H$-triangle of generalised nonnesting partitionsConference paper

Authors: Marko Thiel 1

  • 1 Faculty of Mathematics [Vienna]

[en]
With a crystallographic root system $\Phi$ , there are associated two Catalan objects, the set of nonnesting partitions $NN(\Phi)$, and the cluster complex $\Delta (\Phi)$. These possess a number of enumerative coincidences, many of which are captured in a surprising identity, first conjectured by Chapoton. We prove this conjecture, and indicate its generalisation for the Fuß-Catalan objects $NN^{(k)}(\Phi)$ and $\Delta^{(k)}(\Phi)$, conjectured by Armstrong.

[fr]
A un système de racines cristallographique, on associe deux objets de Catalan: l’ensemble des partitions non-emboîtées $NN(\Phi)$, et le complexe d’amas$\Delta (\Phi)$. Ils possèdent de nombreuses coïncidences énumératives, plusieurs d’entre elles étant capturées dans une identité surprenante, conjecturée par Chapoton. Nous démontrons cette conjecture, et indiquons sa généralisation pour les objets de Fuß-Catalan $NN^{(k)}(\Phi)$ et $\Delta^{(k)}(\Phi)$, conjecturée par Armstrong.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] nonnesting partitions, noncrossing partitions, cluster complex, Coxeter-Catalan objects

Consultation statistics

This page has been seen 360 times.
This article's PDF has been downloaded 657 times.