We define a $0$-Hecke action on composition tableaux, and then use it to derive $0$-Hecke modules whose quasisymmetric characteristic is a quasisymmetric Schur function. We then relate the modules to the weak Bruhat order and use them to derive a new basis for quasisymmetric functions. We also classify those modules that are tableau-cyclic and likewise indecomposable. Finally, we develop a restriction rule that reflects the coproduct of quasisymmetric Schur functions.

Source : oai:HAL:hal-01207585v1

Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)

Section: Proceedings

Published on: January 1, 2014

Submitted on: November 21, 2016

Keywords: combinatorial representation theory,$0$-Hecke algebra,composition tableaux,quasisymmetric functions,Schur functions,weak Bruhat order,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

This page has been seen 67 times.

This article's PDF has been downloaded 102 times.