Jay Pantone ; Vincent Vatter
-
The Rearrangement Conjecture
dmtcs:2394 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2014,
DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
-
https://doi.org/10.46298/dmtcs.2394
The Rearrangement Conjecture
Authors: Jay Pantone 1; Vincent Vatter 1
NULL##NULL
Jay Pantone;Vincent Vatter
1 Department of Mathematics [Gainesville]
The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly Wilf-equivalent then they are rearrangements of each other. We further conjecture that Wilf-equivalence implies strong Wilf-equivalence.
The Structure of Permutation Classes; Funder: National Science Foundation; Code: 1301692
2 Documents citing this article
Source : OpenCitations
Bloom, Jonathan; Saracino, Dan, 2019, On Criteria For Rook Equivalence Of Ferrers Boards, European Journal Of Combinatorics, 76, pp. 199-207, 10.1016/j.ejc.2018.08.006.
Fidler, Jennifer; Glasscock, Daniel; Miceli, Brian; Pantone, Jay; Xu, Min, 2018, Shift Equivalence In The Generalized Factor Order, Archiv Der Mathematik, 110, 6, pp. 539-547, 10.1007/s00013-018-1170-4.