Sam Hopkins ; David Perkinson
-
Bigraphical arrangements
dmtcs:2398 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2014,
DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
-
https://doi.org/10.46298/dmtcs.2398Bigraphical arrangementsConference paper
Authors: Sam Hopkins 1; David Perkinson 2
NULL##NULL
Sam Hopkins;David Perkinson
We define the bigraphical arrangement of a graph and show that the Pak-Stanley labels of its regions are the parking functions of a closely related graph, thus proving conjectures of Duval, Klivans, and Martin and of Hopkins and Perkinson. A consequence is a new proof of a bijection between labeled graphs and regions of the Shi arrangement first given by Stanley. We also give bounds on the number of regions of a bigraphical arrangement. The full version of this paper is forthcoming in the $\textit{Transactions of the American Mathematical Society}$
Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] hyperplane arrangements, parking functions, abelian sandpile model