Shishuo Fu ; James Sellers - Bijective Proofs of Partition Identities of MacMahon, Andrews, and Subbarao

dmtcs:2400 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2400
Bijective Proofs of Partition Identities of MacMahon, Andrews, and SubbaraoConference paper

Authors: Shishuo Fu 1,2; James Sellers 3

[en]
We revisit a classic partition theorem due to MacMahon that relates partitions with all parts repeated at least once and partitions with parts congruent to $2,3,4,6 \pmod{6}$, together with a generalization by Andrews and two others by Subbarao. Then we develop a unified bijective proof for all four theorems involved, and obtain a natural further generalization as a result.

[fr]
Nous revisitons un théorème de partitions d'entiers dû à MacMahon, qui relie les partitions dont chaque part est répétée au moins une fois et celles dont les parts sont congrues à $2, 3, 4, 6 \pmod{6}$, ainsi qu'une généralisation par Andrews et deux autres par Subbarao. Ensuite nous construisons unepreuve bijective unifiée pour tous les quatre théorèmes ci-dessus, et obtenons de plus une généralisation naturelle.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] partition, residue classes, bijection, generating function

2 Documents citing this article

Consultation statistics

This page has been seen 383 times.
This article's PDF has been downloaded 1060 times.