Vincent Pilaud - Signed tree associahedra

dmtcs:2402 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2402
Signed tree associahedraConference paper

Authors: Vincent Pilaud ORCID1

[en]
An associahedron is a polytope whose vertices correspond to the triangulations of a convex polygon and whose edges correspond to flips between them. J.-L. Loday gave a particularly elegant realization of the associahedron, which was then generalized in two directions: on the one hand to obtain realizations of graph associahedra, and on the other hand to obtain multiple realizations of the associahedron parametrized by a sequence of signs. The goal of this paper is to unify and extend these two constructions to signed tree associahedra.

[fr]
Un associaèdre est un polytope dont les sommets correspondent aux triangulations d’un polygone convexe et dont les arêtes correspondent aux flips entre ces triangulations. J.-L. Loday a donné une construction particulièrement élégante de l’associaèdre qui a été généralisée dans deux directions : d’une part pour obtenir des réalisations des associaèdres de graphes, et d’autre part pour obtenir de multiples réalisations de l’associaèdre paramétrées par une suite de signes. L’objectif de ce travail est d’unifier et d’étendre ces constructions aux associaèdres d’arbres signés.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] Graph associahedra, permutahedra, nested complexes, signed spines, polytopal realizations

Classifications

Mathematics Subject Classification 20201

3 Documents citing this article

Consultation statistics

This page has been seen 397 times.
This article's PDF has been downloaded 627 times.