![]() |
Discrete Mathematics & Theoretical Computer Science |
A classical result of MacMahon states that inversion number and major index have the same distribution over permutations of a given multiset. In this work we prove a strengthening of this theorem originally conjectured by Haglund. Our result can be seen as an equidistribution theorem over the ordered partitions of a multiset into sets, which we call ordered multiset partitions. Our proof is bijective and involves a new generalization of Carlitz's insertion method. As an application, we develop refined Macdonald polynomials for hook shapes. We show that these polynomials are symmetric and give their Schur expansion.
Source : ScholeXplorer
IsRelatedTo ARXIV 1408.5817 Source : ScholeXplorer IsRelatedTo DOI 10.1016/j.jcta.2015.03.012 Source : ScholeXplorer IsRelatedTo DOI 10.48550/arxiv.1408.5817
|