Jang Soo Kim ; Suho Oh - The Selberg integral and Young books

dmtcs:2408 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2408
The Selberg integral and Young booksConference paper

Authors: Jang Soo Kim 1; Suho Oh 2,3

[en]
The Selberg integral is an important integral first evaluated by Selberg in 1944. Stanley found a combinatorial interpretation of the Selberg integral in terms of permutations. In this paper, new combinatorial objects "Young books'' are introduced and shown to have a connection with the Selberg integral. This connection gives an enumeration formula for Young books. It is shown that special cases of Young books become standard Young tableaux of various shapes: shifted staircases, squares, certain skew shapes, and certain truncated shapes. As a consequence, enumeration formulas for standard Young tableaux of these shapes are obtained.

[fr]
L’intégrale de Selberg est une partie intégrante importante abord évaluée par Selberg en 1944. Stanley a trouvé une interprétation combinatoire de la Selberg aide en permutations. Dans ce papier, de nouveaux objets combinatoires “livres de Young” sont introduits et présentés à avoir un lien avec l’intégrale de Selberg. Cette connexion donne une formule d'énumération pour les livres de Young. Il est démontré que des cas spéciaux de livres de Young deviennent tableaux standards de Young de formes diverses: escaliers décalés, places, certaines formes gauches et certaines formes tronquées. En conséquence, l’énumération des formules pour tableaux standards de Young de ces formes sont obtenues.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] Selberg integral, standard Young tableau, hook length formula

3 Documents citing this article

Consultation statistics

This page has been seen 374 times.
This article's PDF has been downloaded 403 times.