Robert Cori ; Domenico Senato ; Pasquale Petrullo - Yamanouchi toppling

dmtcs:2413 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2413
Yamanouchi topplingArticle

Authors: Robert Cori 1; Domenico Senato 2,3; Pasquale Petrullo 2,3

We study an extension of the chip-firing game. A given set of admissible moves, called Yamanouchi moves, allows the player to pass from a starting configuration $\alpha$ to a further configuration $\beta$. This can be encoded via an action of a certain group, the toppling group, associated with each connected graph. This action gives rise to a generalization of Hall-Littlewood symmetric polynomials and a new combinatorial basis for them. Moreover, it provides a general method to construct all orthogonal systems associated with a given random variable.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: chip-firing game,Hall-Littlewood symmetric polynomials.,Yamanouchi words,Young tableaux,orthogonal polynomials,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

Consultation statistics

This page has been seen 309 times.
This article's PDF has been downloaded 270 times.