Ange Bigeni - A bijection between irreducible k-shapes and surjective pistols of height $k-1$

dmtcs:2415 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2415
A bijection between irreducible k-shapes and surjective pistols of height $k-1$Conference paper

Authors: Ange Bigeni 1

  • 1 Combinatoire, théorie des nombres

[en]
This paper constructs a bijection between irreducible $k$-shapes and surjective pistols of height $k-1$, which carries the "free $k$-sites" to the fixed points of surjective pistols. The bijection confirms a conjecture of Hivert and Mallet (FPSAC 2011) that the number of irreducible $k$-shape is counted by the Genocchi number $G_{2k}$.

[fr]
On construit une bijection entre les $k$-formes irréductibles et les pistolets surjectifs de hauteur $k-1$ qui envoie les ”$k$-sites libres” sur les points fixes des pistolets. Cette bijection démontre une conjecture de Hivert et Mallet (FPSAC 2011), selon laquelle les $k$-formes irréductibles sont comptées par les nombres de Genocchi $G_{2k}$.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] (irreducible) $k$-shapes, surjective pistols, Genocchi numbers, Gandhi polynomials

Consultation statistics

This page has been seen 339 times.
This article's PDF has been downloaded 409 times.