We define piecewise-linear and birational analogues of toggle-involutions, rowmotion, and promotion on order ideals of a poset $P$ as studied by Striker and Williams. Piecewise-linear rowmotion relates to Stanley's transfer map for order polytopes; piecewise-linear promotion relates to Schützenberger promotion for semistandard Young tableaux. When $P = [a] \times [b]$, a reciprocal symmetry property recently proved by Grinberg and Roby implies that birational rowmotion (and consequently piecewise-linear rowmotion) is of order $a+b$. We prove some homomesy results, showing that for certain functions $f$, the average of $f$ over each rowmotion/promotion orbit is independent of the orbit chosen.

Source : oai:HAL:hal-01207546v1

Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)

Section: Proceedings

Published on: January 1, 2014

Submitted on: November 21, 2016

Keywords: tropicalization,promotion,rowmotion,order polytope,order ideal,poset,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

This page has been seen 33 times.

This article's PDF has been downloaded 53 times.