Francesco Brenti ; Fabrizio Caselli - Peak algebras, paths in the Bruhat graph and Kazhdan-Lusztig polynomials

dmtcs:2423 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2423
Peak algebras, paths in the Bruhat graph and Kazhdan-Lusztig polynomialsConference paper

Authors: Francesco Brenti ORCID1,2,3; Fabrizio Caselli 4,5

[en]
We obtain a nonrecursive combinatorial formula for the Kazhdan-Lusztig polynomials which holds in complete generality and which is simpler and more explicit than any existing one, and which cannot be linearly simplified. Our proof uses a new basis of the peak subalgebra of the algebra of quasisymmetric functions.

[fr]
On montre une formule combinatoire pour les polynômes de Kazhdan-Lusztig qui est valable en toute généralité. Cette formule est plus simple et plus explicite que toutes les autres formules connues; de plus, elle ne peut pas être simplifiée linéairement. La preuve utilise une nouvelle base pour la sous-algèbre des sommets de l’algèbre des fonctions quasi-symmetriques.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] quasi-symmetric functions, cd-index, Coxeter groups, lattice paths

Consultation statistics

This page has been seen 360 times.
This article's PDF has been downloaded 431 times.