We establish a simple recurrence formula for the number $Q_g^n$ of rooted orientable maps counted by edges and genus. The formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It gives by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large $g$. The formula is similar in look to the one discovered by Goulden and Jackson for triangulations (although the latter does not rely on an additional Tutte equation). Both of them have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved - should such an interpretation exist, the history of bijective methods for maps would tend to show that the case treated here is easier to start with than the one of triangulations.

Source : oai:HAL:hal-01207551v1

Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)

Section: Proceedings

Published on: January 1, 2014

Submitted on: November 21, 2016

Keywords: maps on surfaces,Enumeration,quadrangulations,KP hierarchy,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

This page has been seen 30 times.

This article's PDF has been downloaded 177 times.