Nathan Williams - Bijactions in Cataland

dmtcs:2426 - Discrete Mathematics & Theoretical Computer Science, January 1, 2014, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) - https://doi.org/10.46298/dmtcs.2426
Bijactions in CatalandConference paper

Authors: Nathan Williams ORCID1

  • 1 Laboratoire de combinatoire et d'informatique mathématique [Montréal]

[en]
In this abstract, I will survey the story of two enumerative miracles that relate certain Coxeter-theoretic objects and other poset-theoretic objects. The first miracle relates reduced words and linear extensions, while the second may be thought of as relating group elements and order ideals. The purpose of this abstract is to use a conjecture from my thesis to present both miracles in the same light.

[fr]
Dans ce résumé, j’étudie l’histoire de deux miracles énumératifs qui relient certains objets de la théorie de Coxeter et d’autres objets de la théorie des posets. Le premier miracle relie des mots réduits et des extensions linéaires, tandis que le second relie des éléments du groupe et des idéaux d’ordre. Le but de ce résumé est d’utiliser une conjecture de ma thèse afin de présenter les deux miracles sous la même lumière.


Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Section: Proceedings
Published on: January 1, 2014
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] Cambrian, Catalan, Coxeter, subword, toggle

Consultation statistics

This page has been seen 377 times.
This article's PDF has been downloaded 478 times.