Yannic Vargas
-
Hopf algebra of permutation pattern functions
dmtcs:2446 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2014,
DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
-
https://doi.org/10.46298/dmtcs.2446
Hopf algebra of permutation pattern functionsArticle
Authors: Yannic Vargas 1
NULL
Yannic Vargas
1 Laboratoire de combinatoire et d'informatique mathématique [Montréal]
We study permutation patterns from an algebraic combinatorics point of view. Using analogues of the classical shuffle and infiltration products for word, we define two new Hopf algebras of permutations related to the notion of permutation pattern. We show several remarkable properties of permutation patterns functions, as well their occurrence in other domains.
Frederik Garbe;Daniel Kral;Alexandru Malekshahian;Raul Penaguiao, arXiv (Cornell University), The dimension of the feasible region of pattern densities, 24, pp. 471-477, 2023, Prague, Czech Republic, 10.5817/cz.muni.eurocomb23-065, https://arxiv.org/abs/2309.10203.
Jacopo Borga;Raul Penaguiao, 2020, The feasible region for consecutive patterns of permutations is a cycle polytope, Algebraic Combinatorics, 3, 6, pp. 1259-1281, 10.5802/alco.135, https://doi.org/10.5802/alco.135.
Guillaume Fertin;Samuele Giraudo;Sylvie Hamel;Stéphane Vialette, Lecture notes in computer science, Unshuffling Permutations: Trivial Bijections and Compositions, pp. 242-261, 2019, 10.1007/978-3-030-14812-6_15.