Given an underlying undirected simple graph, we consider the set of all acyclic orientations of its edges. Each of these orientations induces a partial order on the vertices of our graph, and therefore we can count the number of linear extensions of these posets. We want to know which choice of orientation maximizes the number of linear extensions of the corresponding poset, and this problem is solved essentially for comparability graphs and odd cycles, presenting several proofs. We then provide an inequality for general graphs and discuss further techniques.

Source : oai:HAL:hal-01207561v1

Volume: DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)

Section: Proceedings

Published on: January 1, 2014

Submitted on: November 21, 2016

Keywords: graph orientation,linear extension,poset,comparability graph.,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

This page has been seen 67 times.

This article's PDF has been downloaded 107 times.