Thomas Mcconville - Lattice structure of Grassmann-Tamari orders

dmtcs:2460 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2460
Lattice structure of Grassmann-Tamari ordersConference paper

Authors: Thomas McConville

    [en]
    The Tamari order is a central object in algebraic combinatorics and many other areas. Defined as the transitive closure of an associativity law, the Tamari order possesses a surprisingly rich structure: it is a congruence-uniform lattice. In this work, we consider a larger class of posets, the Grassmann-Tamari orders, which arise as an ordering on the facets of the non-crossing complex introduced by Pylyavskyy, Petersen, and Speyer. We prove that the Grassmann-Tamari orders are congruence-uniform lattices, which resolves a conjecture of Santos, Stump, and Welker. Towards this goal, we define a closure operator on sets of paths inside a rectangle, and prove that the biclosed sets of paths, ordered by inclusion, form a congruence-uniform lattice. We then prove that the Grassmann-Tamari order is a quotient lattice of the corresponding lattice of biclosed sets.

    [fr]
    L’ordre Tamari est un objet central dans la combinatoire algébrique et de nombreux autres domaines. Définie comme la fermeture transitive d’une loi d’associativité, l’ordre Tamari possède une structure étonnamment riche: il est un treillis congruence uniforme. Dans ce travail, nous considérons une classe plus large de posets, les ordres Grassmann-Tamari, qui découlent comme un ordre sur les facettes du complexe non-croisement introduit par Pylyavskyy, Petersen, et Speyer. Nous démontrons que les ordres Grassmann-Tamari sont treillis congruence uniformes, ce qui résout une conjecture de Santos, Stump, et Welker. Pour atteindre cet objectif, nous définissons un opérateur de fermeture sur des ensembles de chemins à l’intérieur d’un rectangle, et prouver que les ensembles bifermé de chemins, ordonné par inclusion, forment un réseau de congruence uniforme. Nous démontrons ensuite que l’ordre Grassmann-Tamari est un treillis quotient du treillis correspondant d’ensembles bifermés.


    Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
    Section: Proceedings
    Published on: January 1, 2015
    Imported on: November 21, 2016
    Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] biclosed sets, Tamari lattice, congruence-uniform, lattice quotient, noncrossing complex, Grassmann-Tamari associahedron

    Consultation statistics

    This page has been seen 423 times.
    This article's PDF has been downloaded 555 times.