Adrien Boussicault ; Simone Rinaldi ; Samanta Socci - The number of directed $k$-convex polyominoes

dmtcs:2465 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2465
The number of directed $k$-convex polyominoesConference paper

Authors: Adrien Boussicault 1; Simone Rinaldi 2; Samanta Socci 2

[en]
We present a new method to obtain the generating functions for directed convex polyominoes according to several different statistics including: width, height, size of last column/row and number of corners. This method can be used to study different families of directed convex polyominoes: symmetric polyominoes, parallelogram polyominoes. In this paper, we apply our method to determine the generating function for directed $k$-convex polyominoes.We show it is a rational function and we study its asymptotic behavior.

[fr]
Nous présentons une nouvelle méthode générique pour obtenir facilement et rapidement les fonctions génératrices des polyominos dirigés convexes avec différentes combinaisons de statistiques : hauteur, largeur, longueur de la dernière ligne/colonne et nombre de coins. La méthode peut être utilisée pour énumérer différentes familles de polyominos dirigés convexes: les polyominos symétriques, les polyominos parallélogrammes. De cette façon, nouscalculons la fonction génératrice des polyominos dirigés $k$-convexes, nous montrons qu’elle est rationnelle et nous étudions son comportement asymptotique.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Parallelogram polyomino, directed convex polyomino, degree of convexity, tree, path, generating function.

2 Documents citing this article

Consultation statistics

This page has been seen 421 times.
This article's PDF has been downloaded 380 times.