Sara Billey ; Matthew Fahrbach ; Alan Talmage - Factoring peak polynomials

dmtcs:2478 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2478
Factoring peak polynomialsConference paper

Authors: Sara Billey 1; Matthew Fahrbach 2; Alan Talmage 2

  • 1 Department of Mathematics [Seattle]
  • 2 Department of Mathematics

[en]
Given a permutation $\pi=\pi_1\pi_2\cdots \pi_n \in S_n$, we say an index $i$ is a peak if $\pi_{i-1} < \pi_i > \pi_{i+1}$. Let $P(\pi)$ denote the set of peaks of $\pi$. Given any set $S$ of positive integers, define ${P_S(n)=\{\pi\in S_n:P(\pi)=S\}}$. Billey-Burdzy-Sagan showed that for all fixed subsets of positive integers $S$ and sufficiently large $n$, $|P_S(n)|=p_S(n)2^{n-|S|-1}$ for some polynomial $p_S(x)$ depending on $S$. They conjectured that the coefficients of $p_S(x)$ expanded in a binomial coefficient basis centered at $max(S)$ are all positive. We show that this is a consequence of a stronger conjecture that bounds the modulus of the roots of $p_S(x)$. Furthermore, we give an efficient explicit formula for peak polynomials in the binomial basis centered at $0$, which we use to identify many integer roots of peak polynomials along with certain inequalities and identities.

[fr]
Etant donné une permutation $\pi=\pi_1\pi_2\cdots \pi_n \in S_n$ du groupe symétrique, nous disons qu’un indice i est unsommet si $\pi_{i-1} < \pi_i > \pi_{i+1}$. Soit $P(\pi)$ l’ensemble des sommets de $\pi$. Billey-Burdzy-Sagan ont montré que,pour tout sous-ensemble d’entiers positifs S et n suffisamment grand, le nombre de permutations de $n$ éléments avecensemble de sommets $S$ est $|P_S(n)|=p_S(n)2^{n-|S|-1}$ pour un certain polynôme $p_S(x)$ dépendant de $S$.. Ils ont fait la conjectureque les coefficients du polynôme $p_S(x)$ exprimé dans une base de coefficients binomiaux centrée en $max(S)$ sont touspositifs. Nous montrons que cela découle d’une conjecture plus forte qui borne le module des racines du polynôme$p_S(x)$. De plus, nous donnons une formule explicite efficace pour les polynômes sommets dans la base binomialecentrée en $0$, que nous utilisons pour identifier plusieurs racines entières de polynômes sommets, ainsi que certainesinégalités et identités.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] binomial coefficient, combinatorics, peak, permutation
Funding:
    Source : OpenAIRE Graph
  • Combinatorial and Algebraic Aspects of Varieties; Funder: National Science Foundation; Code: 1101017
  • REU 2011: Inverse Problems for Electrical Networks; Funder: National Science Foundation; Code: 1062253

Consultation statistics

This page has been seen 476 times.
This article's PDF has been downloaded 811 times.