We generalize previous definitions of Tesler matrices to allow negative matrix entries and non-positive hook sums. Our main result is an algebraic interpretation of a certain weighted sum over these matrices. Our interpretation uses <i>virtual Hilbert series</i>, a new class of symmetric function specializations which are defined by their values on (modified) Macdonald polynomials. As a result of this interpretation, we obtain a Tesler matrix expression for the Hall inner product $\langle \Delta_f e_n, p_{1^{n}}\rangle$, where $\Delta_f$ is a symmetric function operator from the theory of diagonal harmonics. We use our Tesler matrix expression, along with various facts about Tesler matrices, to provide simple formulas for $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ and $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ involving $q; t$-binomial coefficients and ordered set partitions, respectively.

Source : oai:HAL:hal-01337771v1

Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)

Section: Proceedings

Published on: January 1, 2015

Submitted on: November 21, 2016

Keywords: Tesler matrices,Macdonald polynomials,Shuffle Conjecture,ordered set partitions,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 23 times.

This article's PDF has been downloaded 30 times.