Myrto Kallipoliti ; Eleni Tzanaki - Bijections of dominant regions in the $m$-Shi arrangements of type $A$, $B$ and $C$

dmtcs:2495 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2495
Bijections of dominant regions in the $m$-Shi arrangements of type $A$, $B$ and $C$Article

Authors: Myrto Kallipoliti ORCID1; Eleni Tzanaki 2

  • 1 Fakultät für Mathematik [Wien]
  • 2 Department of Applied Mathematics [Heraklion]

In the present paper, the relation between the dominant regions in the $m$-Shi arrangement of types $B_n/C_n$, and those of the $m$-Shi arrangement of type $A_{n-1}$ is investigated. More precisely, it is shown explicitly how the sets $R^m(B_n)$ and $R^m(C_n)$, of dominant regions of the $m$-Shi arrangement of types $B_n$ and $C_n$ respectively, can be projected to the set $R^m(A_{n-1})$ of dominant regions of the $m$-Shi arrangement of type $A_{n-1}$. This is done by using two different viewpoints for the representative alcoves of these regions: the Shi tableaux and the abacus diagrams. Moreover, bijections between the sets $R^m(B_n)$, $R^m(C_n)$, and lattice paths inside a rectangle $n\times{mn}$ are provided.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: Shi hyperplane arrengements,abacus diagram,affine permutations,lattice paths,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Consultation statistics

This page has been seen 343 times.
This article's PDF has been downloaded 536 times.