Myrto Kallipoliti ; Eleni Tzanaki - Bijections of dominant regions in the $m$-Shi arrangements of type $A$, $B$ and $C$

dmtcs:2495 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2495
Bijections of dominant regions in the $m$-Shi arrangements of type $A$, $B$ and $C$Conference paper

Authors: Myrto Kallipoliti ORCID1; Eleni Tzanaki 2

  • 1 Fakultät für Mathematik [Wien]
  • 2 Department of Applied Mathematics [Heraklion]

[en]
In the present paper, the relation between the dominant regions in the $m$-Shi arrangement of types $B_n/C_n$, and those of the $m$-Shi arrangement of type $A_{n-1}$ is investigated. More precisely, it is shown explicitly how the sets $R^m(B_n)$ and $R^m(C_n)$, of dominant regions of the $m$-Shi arrangement of types $B_n$ and $C_n$ respectively, can be projected to the set $R^m(A_{n-1})$ of dominant regions of the $m$-Shi arrangement of type $A_{n-1}$. This is done by using two different viewpoints for the representative alcoves of these regions: the Shi tableaux and the abacus diagrams. Moreover, bijections between the sets $R^m(B_n)$, $R^m(C_n)$, and lattice paths inside a rectangle $n\times{mn}$ are provided.

[fr]
Dans cet article, nous étudions la relation entre les régions dominantes du $m$-arrangement de Shi de types $B_n/C_n$ et ceux du $m$-arrangement de Shi de type $A_{n-1}$. Plus précisément, nous montrons comment les ensembles $R^m(B_n)$ et $R^m(C_n)$, des régions dominantes du $m$ -arrangement de Shi de types $B_n$ et $C_n$ respectivement, peuvent être projetés sur l’ensemble $R^m(A_{n-1})$ des régions dominantes du $m$-arrangement de Shi de types $A_{n-1}$. Pour cela nous utilisons deux points de vue différents sur les alcôves représentatives de ces régions: les tableaux de Shi et les diagrammes d’abaques. De plus, nous fournissons des bijections entre les ensembles $R^m(B_n)$, $R^m(C_n)$, et les chemins à l’intérieur d’un rectangle $n\times{mn}$.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Shi hyperplane arrengements, abacus diagram, affine permutations, lattice paths

Consultation statistics

This page has been seen 457 times.
This article's PDF has been downloaded 742 times.