Robin Sulzgruber ; Marko Thiel - Type C parking functions and a zeta map

dmtcs:2496 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2496
Type C parking functions and a zeta mapConference paper

Authors: Robin Sulzgruber 1; Marko Thiel 1

  • 1 Fakultät für Mathematik [Wien]

[en]
We introduce type $C$ parking functions, encoded as vertically labelled lattice paths and endowed with a statistic dinv'. We define a bijection from type $C$ parking functions to regions of the Shi arrangement of type $C$, encoded as diagonally labelled ballot paths and endowed with a natural statistic area'. This bijection is a natural analogue of the zeta map of Haglund and Loehr and maps dinv' to area'. We give three different descriptions of it.

[fr]
Nous introduisons les fonctions de stationnement de type $C$, encodées par des chemins étiquetés verticalement et munies d’une statistique dinv'. Nous définissons une bijection entre les fonctions de stationnement de type $C$ et les régions de l’arrangement de Shi de type $C$, encodées par des chemins étiquetés diagonalement et munies d’une statistique naturelle area'. Cette bijection est un analogue naturel à la fonction zeta de Haglund et Loehr, et envoie dinv' sur area'. Nous donnons trois différentes descriptions de celle-ci.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] parking functions, Shi arrangement, zeta map, dinv statistic

1 Document citing this article

Consultation statistics

This page has been seen 367 times.
This article's PDF has been downloaded 499 times.