Miles Eli Jones ; Luc Lapointe - Pieri rules for Schur functions in superspace

dmtcs:2497 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2497
Pieri rules for Schur functions in superspaceConference paper

Authors: Miles Eli Jones 1; Luc Lapointe 1

  • 1 Instituto de Matemática y Física - Universidad de Talca

[en]
The Schur functions in superspace $s_\Lambda$ and $\overline{s}_\Lambda$ are the limits $q=t= 0$ and $q=t=\infty$ respectively of the Macdonald polynomials in superspace. We present the elementary properties of the bases $s_\Lambda$ and $\overline{s}_\Lambda$ (which happen to be essentially dual) such as Pieri rules, dualities, monomial expansions, tableaux generating functions, and Cauchy identities.

[fr]
Les fonctions de Schur dans le superespace $s_\Lambda$ et $\overline{s}_\Lambda$ sont les limites $q=t= 0$ et $q=t=\infty$ respectivement des polynômes de Macdonald dans le superespace. Nous présentons les propriétés élémentaires des bases $s_\Lambda$ et $\overline{s}_\Lambda$ (qui sont essentiellement duales l'une de l'autre) tels que les règles de Pieri, la dualité, le développement en fonctions monomiales, les fonctions génératrices de tableaux et les identités de Cauchy.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Schur functions, Key polynomials, symmetric functions in superspace

Consultation statistics

This page has been seen 356 times.
This article's PDF has been downloaded 584 times.