Ryan Kaliszewski ; Huilan Li - The $(m, n)$-rational $q, t$-Catalan polynomials for $m=3$ and their $q, t$-symmetry

dmtcs:2500 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2500
The $(m, n)$-rational $q, t$-Catalan polynomials for $m=3$ and their $q, t$-symmetryConference paper

Authors: Ryan Kaliszewski 1; Huilan Li 1

  • 1 Department of mathematics [Philadelphie]

[en]
We introduce a new statistic, skip, on rational $(3,n)$-Dyck paths and define a marked rank word for each path when $n$ is not a multiple of 3. If a triple of valid statistics (area; skip; dinv) are given, we have an algorithm to construct the marked rank word corresponding to the triple. By considering all valid triples we give an explicit formula for the $(m,n)$-rational $q; t$-Catalan polynomials when $m=3$. Then there is a natural bijection on the triples of statistics (area; skip; dinv) which exchanges the statistics area and dinv while fixing the skip. Thus we prove the $q; t$-symmetry of $(m,n)$-rational $q; t$-Catalan polynomials for $m=3$..

[fr]
Nous introduisons une nouvelle statistique, le skip, sur les chemins de $(3,n)$-Dyck rationnels et définissons le mot de rang marqué pour chaque chemin quand $n$ n’est pas un multiple de 3. Si un triplet valide de statistiques (aire, skip, dinv) est donné, nous avons un algorithme pour construire le mot de rang marqué correspondant au triplet. En considérant tous les triplets valides, nous donnons une formule explicite pour les polynômes de $q; t$-Catalan $(m,n)$- rationnels quand $m=3$. Enfin, il existe une bijection naturelle sur les triplets de statistiques (aire, skip, dinv) qui échange les statistiques aires et dinv en conservant le skip. Ainsi, nous prouvons la $q; t$-symétrie des polynômes de $q; t$-Catalan $(m,n)$-rationnels pour $m=3$..


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Dyck path, Catalan number, rank word

1 Document citing this article

Consultation statistics

This page has been seen 412 times.
This article's PDF has been downloaded 643 times.