Discrete Mathematics & Theoretical Computer Science |
The notion of the negative $q$-binomial was recently introduced by Fu, Reiner, Stanton and Thiem. Mirroring the negative $q$-binomial, we show the classical $q$ -Stirling numbers of the second kind can be expressed as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in $q$ and $(1+q)$. We extend this enumerative result via a decomposition of the Stirling poset, as well as a homological version of Stembridge’s $q=-1$ phenomenon. A parallel enumerative, poset theoretic and homological study for the $q$-Stirling numbers of the first kind is done beginning with de Médicis and Leroux’s rook placement formulation. Letting $t=1+q$ we give a bijective combinatorial argument à la Viennot showing the $(q; t)$-Stirling numbers of the first and second kind are orthogonal.