Jean-Baptiste Priez ; Aladin Virmaux - Non-commutative Frobenius characteristic of generalized parking functions

dmtcs:2504 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2504
Non-commutative Frobenius characteristic of generalized parking functionsConference paper

Authors: Jean-Baptiste Priez 1; Aladin Virmaux 1

  • 1 Laboratoire de Recherche en Informatique

[en]
We give a recursive definition of generalized parking functions that allows them to be viewed as a species. From there we compute a non-commutative characteristic of the generalized parking function module and deduce some enumeration formulas of structures and isomorphism types. We give as well an interpretation in several bases of non commutative symmetric functions. Finally, we investigate an inclusion-exclusion formula given by Kung and Yan.

[fr]
Nous donnons une définition récursive des fonctions de parking généralisées nous permettant de munir ces dernières d’une structure d’espèce. Nous utilisons ce point de vu pour donner une caractéristique de Frobenius non-commutative du module des fonctions de parking généralisées que nous appliquons afin de donner de nombreuses formules d’énumération de structures et de type d’isomorphismes, ainsi qu’une interprétation dans plusieurs bases des fonctions symétriques non commutatives. Enfin, nousétudions une formule d’inclusion-exclusion provenant de Kung et Yan.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] parking function, species, non-commutative symmetric functions

Consultation statistics

This page has been seen 359 times.
This article's PDF has been downloaded 580 times.