An important problem from invariant theory is to describe the subspace of a tensor power of a representation invariant under the action of the group. According to Weyl's classic, the first main (later: 'fundamental') theorem of invariant theory states that all invariants are expressible in terms of a finite number among them, whereas a second main theorem determines the relations between those basic invariants.Here we present a transparent, combinatorial proof of a second fundamental theorem for the defining representation of the symplectic group $Sp(2n)$. Our formulation is completely explicit and provides a very precise link to $(n+1)$-noncrossing perfect matchings, going beyond a dimension count. As a corollary, we obtain an instance of the cyclic sieving phenomenon.

Source : oai:HAL:hal-01337818v1

Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)

Section: Proceedings

Published on: January 1, 2015

Submitted on: November 21, 2016

Keywords: invariant tensors,cyclic sieving phenomenon,matchings,classical groups,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 29 times.

This article's PDF has been downloaded 33 times.