Arthur L.B. Yang ; Philip B. Zhang - The Real-rootedness of Eulerian Polynomials via the Hermite–Biehler Theorem

dmtcs:2510 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2510
The Real-rootedness of Eulerian Polynomials via the Hermite–Biehler TheoremConference paper

Authors: Arthur L.B. Yang 1; Philip B. Zhang 1

  • 1 Center for Combinatorics [Nankai]

[en]
Based on the Hermite–Biehler theorem, we simultaneously prove the real-rootedness of Eulerian polynomials of type $D$ and the real-rootedness of affine Eulerian polynomials of type $B$, which were first obtained by Savage and Visontai by using the theory of $s$-Eulerian polynomials. We also confirm Hyatt’s conjectures on the inter-lacing property of half Eulerian polynomials. Borcea and Brändén’s work on the characterization of linear operators preserving Hurwitz stability is critical to this approach.

[fr]
Basé sur le théorème de Hermite–Biehler, nous prouvons simultanément les polynômes eulériens de type $D$ et les polynômes eulériens affine de type $B$ ont seulement racines réelle, qui sont d’abord obtenue par Savage et Visontai en utilisant le théorie des polynômes $s$-eulériens. Nous confirmons aussi les conjectures de Hyatt sur la propriété entrelacement de polynômes mi-eulériens. Le travail de Borcea et Brändén sur la caractérisation des opérateurs linéaires préservant la stabilité Hurwitz est essentielle à cette approche.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Eulerian polynomials, Hermite–Biehler Theorem, Borcea and Brändén’s stability criterion, weak Hurwitz stability

1 Document citing this article

Consultation statistics

This page has been seen 404 times.
This article's PDF has been downloaded 703 times.