[en]
Based on the Hermite–Biehler theorem, we simultaneously prove the real-rootedness of Eulerian polynomials of type $D$ and the real-rootedness of affine Eulerian polynomials of type $B$, which were first obtained by Savage and Visontai by using the theory of $s$-Eulerian polynomials. We also confirm Hyatt’s conjectures on the inter-lacing property of half Eulerian polynomials. Borcea and Brändén’s work on the characterization of linear operators preserving Hurwitz stability is critical to this approach.
[fr]
Basé sur le théorème de Hermite–Biehler, nous prouvons simultanément les polynômes eulériens de type $D$ et les polynômes eulériens affine de type $B$ ont seulement racines réelle, qui sont d’abord obtenue par Savage et Visontai en utilisant le théorie des polynômes $s$-eulériens. Nous confirmons aussi les conjectures de Hyatt sur la propriété entrelacement de polynômes mi-eulériens. Le travail de Borcea et Brändén sur la caractérisation des opérateurs linéaires préservant la stabilité Hurwitz est essentielle à cette approche.