Nantel Bergeron ; Cesar Ceballos ; Jean-Philippe Labbé - Fan realizations of type $A$ subword complexes and multi-associahedra of rank 3

dmtcs:2512 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2512
Fan realizations of type $A$ subword complexes and multi-associahedra of rank 3Conference paper

Authors: Nantel Bergeron ORCID1; Cesar Ceballos ORCID1; Jean-Philippe Labbé 2

  • 1 Fields Institute for Research In Mathematical Sciences
  • 2 Einstein Institute of Mathematics

[en]
We present complete simplicial fan realizations of any spherical subword complex of type $A_n$ for $n\leq 3$. This provides complete simplicial fan realizations of simplicial multi-associahedra $\Delta_{2k+4,k}$, whose facets are in correspondence with $k$-triangulations of a convex $(2k+4)$-gon. This solves the first open case of the problem of finding fan realizations where polytopality is not known. The techniques presented in this paper work for all finite Coxeter groups and we hope that they will be useful to construct fans realizing subword complexes in general. In particular, we present fan realizations of two previously unknown cases of subword complexes of type $A_4$, namely the multi-associahedra $\Delta_{9,2}$ and $\Delta_{11,3}$.

[fr]
Nous construisons des éventails simpliciaux complets ayant la combinatoire des complexes de sous-mots de type $A_n$ pour $n\leq 3$. Par conséquent, nous obtenons des constructions d’éventails des multi-associaèdres $\Delta_{2k+4,k}$, dont les facettes correspondent aux $k$-triangulations d’un $(2k+4)$-gone. Cette construction confirme l’existence d’éventails ayant la combinatoire du multi-associaèdres pour une famille dont la polytopalité n’est pas confirmée. Les techniques utilisées fonctionnent pour tous les groupes de Coxeter et nous espérons qu’elles seront utiles afin de construire des éventails réalisant les complexes de sous-mots en général. En particulier, nous présentons des éventails pour deux complexes de sous-mots de type $A_4$ dont l’existence était inconnue: les multi-associaèdres $\Delta_{9,2}$ et $\Delta_{11,3}$.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] simplicial fans, multiassociahedra, subword complex, Gale duality, realization space
Funding:
    Source : OpenAIRE Graph
  • Funder: Natural Sciences and Engineering Research Council of Canada
  • Discretization in Geometry and Dynamics; Funder: Deutsche Forschungsgemeinschaft; Code: 195170736/TRR 109

Consultation statistics

This page has been seen 415 times.
This article's PDF has been downloaded 425 times.