![]() |
Discrete Mathematics & Theoretical Computer Science |
We introduce the Dyck path triangulation of the cartesian product of two simplices $\Delta_{n-1}\times\Delta_{n-1}$. The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally generalizes to produce triangulations of $\Delta_{r\ n-1}\times\Delta_{n-1}$ using rational Dyck paths. Our study of the Dyck path triangulation is motivated by extendability problems of partial triangulations of products of two simplices. We show that whenever$m\geq k>n$, any triangulations of $\Delta_{m-1}^{(k-1)}\times\Delta_{n-1}$ extends to a unique triangulation of $\Delta_{m-1}\times\Delta_{n-1}$. Moreover, with an explicit construction, we prove that the bound $k>n$ is optimal. We also exhibit interpretations of our results in the language of tropical oriented matroids, which are analogous to classical results in oriented matroid theory.
Source : ScholeXplorer
IsRelatedTo ARXIV 1804.01595 Source : ScholeXplorer IsRelatedTo DOI 10.1016/j.aim.2020.107232 Source : ScholeXplorer IsRelatedTo DOI 10.48550/arxiv.1804.01595
|