Emily Barnard ; Nathan Reading
-
Coxeter-biCatalan combinatorics
dmtcs:2519 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2015,
DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
-
https://doi.org/10.46298/dmtcs.2519Coxeter-biCatalan combinatoricsConference paperAuthors: Emily Barnard
1; Nathan Reading
1
NULL##0000-0003-0768-7872
Emily Barnard;Nathan Reading
- 1 Department of mathematics [North Carolina]
[en]
We consider several counting problems related to Coxeter-Catalan combinatorics and conjecture that the problems all have the same answer, which we call the $W$ -biCatalan number. We prove the conjecture in many cases.
[fr]
Nous considérons des problèmes énumératifs liés à la combinatoire de Coxeter-Catalan et conjecturons que tous les problèmes ont la même solution, que nous appelons le nombre $W$ -biCatalan. Nous prouvons la conjecture dans de nombreux cas.
Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] alternating arc diagram, doubled root poset, twin nonnesting partitions, twin sortable element
Funding:
Source : OpenAIRE Graph- EMSW21-MCTP: Institute for Mathematics at North Carolina State University. (I'M at State); Funder: National Science Foundation; Code: 0943855
- Coxeter combinatorics and cluster algebras; Funder: National Science Foundation; Code: 1101568
- Combinatorics and geometry of mutations; Funder: National Science Foundation; Code: 1500949