Max Glick ; Pavlo Pylyavskyy
-
$Y$ -meshes and generalized pentagram maps
dmtcs:2520 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2015,
DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
-
https://doi.org/10.46298/dmtcs.2520$Y$ -meshes and generalized pentagram mapsConference paperAuthors: Max Glick
1; Pavlo Pylyavskyy
1
NULL##0000-0001-7211-6115
Max Glick;Pavlo Pylyavskyy
[en]
We introduce a rich family of generalizations of the pentagram map sharing the property that each generates an infinite configuration of points and lines with four points on each line. These systems all have a description as $Y$ -mutations in a cluster algebra and hence establish new connections between cluster theory and projective geometry.
[fr]
Nous introduisons une famille de généralisations de l’application pentagramme. Chacune produit une configuration infinie de points et de lignes avec quatre points sur chaque ligne. Ces systèmes ont une description des $Y$ -mutations dans une algèbre amassée, un nouveau lien entre la théorie d’algèbres amassées et la géométrie projective.
Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] pentagram map, discrete dynamical systems, cluster algebras
Funding:
Source : OpenAIRE Graph- CAREER: Algebraic Combinatorics and URE; Funder: National Science Foundation; Code: 1351590
- RTG in Combinatorics; Funder: National Science Foundation; Code: 1148634
- Some questions in total positivity and cluster algebras; Funder: National Science Foundation; Code: 1068169
- PostDoctoral Research Fellowship; Funder: National Science Foundation; Code: 1303482