Bérénice Delcroix-Oger - Semi-pointed partition posets

dmtcs:2532 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2532
Semi-pointed partition posetsConference paper

Authors: Bérénice Delcroix-Oger ORCID1

  • 1 Algèbre, géométrie, logique

[en]
We present here a family of posets which generalizes both partition and pointed partition posets. After a short description of these new posets, we show that they are Cohen-Macaulay, compute their Moebius numbers and their characteristic polynomials. The characteristic polynomials are obtained using a combinatorial interpretation of the incidence Hopf algebra associated to these posets.

[fr]
Nous introduisons ici une famille de posets qui généralise à la fois les poset de partitions et les posets de partitions pointées. Après une description rapide de ces nouveaux posets, nous montrons qu’ils sont Cohen-Macaulay et nous calculons leurs nombres de Moebius et leurs polynômes caractéristiques. Ces derniers sont obtenus grâce à une interprétation combinatoire de l’algèbre de Hopf d’incidence associée à ces posets.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Partition, Incidence Hopf Algebra, Moebius number, characteristic polynomial

Consultation statistics

This page has been seen 362 times.
This article's PDF has been downloaded 789 times.